

Edexcel (B) Biology A-level 10.1 - The nature of ecosystems

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define ecosystem.

Define ecosystem.

All the organisms living in a particular area, and all the non-living conditions found there. Can vary from very large e.g. biome, to very small e.g. microhabitat.

Define and name the trophic levels.

Define and name the trophic levels.

Describes an organism's feeding relationships with other organisms i.e. its position in a food chain. Producer, primary consumer, secondary consumer, tertiary consumer, decomposer.

Give three ways can we represent ecosystem structure.

Give three ways can we represent ecosystem structure.

- Pyramids of number (counting)
 Pyramids of biomass (weighing)
- Pyramids of energy

Give pros and cons of the three pyramids.

Give pros and cons of the three pyramids.

- Number = easiest to measure, but can be distorted by large organisms.
- Biomass = more accurate, but dry mass has to be used.
- Energy = most accurate, but hardest to measure.

Suggest methods of assessing abundance and distribution of organisms.

Suggest methods of assessing abundance and distribution of organisms.

- Quadrats; square frames placed at random in area to be investigated.
- Transects; line or belt that runs across the area to be investigated.

Suggest different ways abundance can be quantified.

Suggest different ways abundance can be quantified.

- Percentage cover
- Frequency (individual counting)
- ACFOR scale (abundant, common,
 - frequent, occasional, rare)

Why might we calculate a Spearman's rank correlation coefficient?

Why might we calculate a Spearman's rank correlation coefficient?

To measure correlation between two variables, i.e. the extent to which changing one variable affects the other variable.

Explain how Spearman's rank results are interpreted.

Explain how Spearman's rank results are interpreted.

Closer to 1= more positive correlation. Closer to -1= more negative correlation. Around 0= no correlation.

Why might we calculate a t-test?

Why might we calculate a t-test?

To determine if the means (averages) of two sets of data are significantly different from each other.

Explain how t-test results are interpreted.

Explain how t-test results are interpreted.

The t value obtained is compared to a critical value (found in a table) for a particular p value chosen by the researcher. If the t value is greater than the critical value, the difference is said to be statistically significant.

